(definition)
Definition: The transitive reduction of a directed graph G is the directed graph G' with the smallest number of edges such that for every path between vertices in G, G' has a path between those vertices.
See also reduced digraph, transitive closure.
Note: Informally G' is the minimal graph with the same connectivity as G. After abstract of A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a directed graph. SIAM Journal on Computing, 1:131--137, 1972.
Author: PEB
If you have suggestions, corrections, or comments, please get in touch with Paul Black.
Entry modified 2 September 2014.
HTML page formatted Mon Feb 2 13:10:40 2015.
Cite this as:
Paul E. Black, "transitive reduction", in
Dictionary of Algorithms and Data Structures [online], Vreda Pieterse and Paul E. Black, eds. 2 September 2014. (accessed TODAY)
Available from: http://www.nist.gov/dads/HTML/transitiveReduction.html