The below red-black tree implementation of was written by Thomas
Niemann and is available on his algorithm
collection webpages.
This code is not subject to copyright restrictions.
/* red-black tree */
#include
#include
#include
#include
typedef int T; /* type of item to be stored */
#define compLT(a,b) (a < b)
#define compEQ(a,b) (a == b)
/* Red-Black tree description */
typedef enum { BLACK, RED } nodeColor;
typedef struct Node_ {
struct Node_ *left; /* left child */
struct Node_ *right; /* right child */
struct Node_ *parent; /* parent */
nodeColor color; /* node color (BLACK, RED) */
T data; /* data stored in node */
} Node;
#define NIL &sentinel /* all leafs are sentinels */
Node sentinel = { NIL, NIL, 0, BLACK, 0};
Node *root = NIL; /* root of Red-Black tree */
void rotateLeft(Node *x) {
/**************************
* rotate node x to left *
**************************/
Node *y = x->right;
/* establish x->right link */
x->right = y->left;
if (y->left != NIL) y->left->parent = x;
/* establish y->parent link */
if (y != NIL) y->parent = x->parent;
if (x->parent) {
if (x == x->parent->left)
x->parent->left = y;
else
x->parent->right = y;
} else {
root = y;
}
/* link x and y */
y->left = x;
if (x != NIL) x->parent = y;
}
void rotateRight(Node *x) {
/****************************
* rotate node x to right *
****************************/
Node *y = x->left;
/* establish x->left link */
x->left = y->right;
if (y->right != NIL) y->right->parent = x;
/* establish y->parent link */
if (y != NIL) y->parent = x->parent;
if (x->parent) {
if (x == x->parent->right)
x->parent->right = y;
else
x->parent->left = y;
} else {
root = y;
}
/* link x and y */
y->right = x;
if (x != NIL) x->parent = y;
}
void insertFixup(Node *x) {
/*************************************
* maintain Red-Black tree balance *
* after inserting node x *
*************************************/
/* check Red-Black properties */
while (x != root && x->parent->color == RED) {
/* we have a violation */
if (x->parent == x->parent->parent->left) {
Node *y = x->parent->parent->right;
if (y->color == RED) {
/* uncle is RED */
x->parent->color = BLACK;
y->color = BLACK;
x->parent->parent->color = RED;
x = x->parent->parent;
} else {
/* uncle is BLACK */
if (x == x->parent->right) {
/* make x a left child */
x = x->parent;
rotateLeft(x);
}
/* recolor and rotate */
x->parent->color = BLACK;
x->parent->parent->color = RED;
rotateRight(x->parent->parent);
}
} else {
/* mirror image of above code */
Node *y = x->parent->parent->left;
if (y->color == RED) {
/* uncle is RED */
x->parent->color = BLACK;
y->color = BLACK;
x->parent->parent->color = RED;
x = x->parent->parent;
} else {
/* uncle is BLACK */
if (x == x->parent->left) {
x = x->parent;
rotateRight(x);
}
x->parent->color = BLACK;
x->parent->parent->color = RED;
rotateLeft(x->parent->parent);
}
}
}
root->color = BLACK;
}
Node *insertNode(T data) {
Node *current, *parent, *x;
/***********************************************
* allocate node for data and insert in tree *
***********************************************/
/* find where node belongs */
current = root;
parent = 0;
while (current != NIL) {
if (compEQ(data, current->data)) return (current);
parent = current;
current = compLT(data, current->data) ?
current->left : current->right;
}
/* setup new node */
if ((x = malloc (sizeof(*x))) == 0) {
printf ("insufficient memory (insertNode)\n");
exit(1);
}
x->data = data;
x->parent = parent;
x->left = NIL;
x->right = NIL;
x->color = RED;
/* insert node in tree */
if(parent) {
if(compLT(data, parent->data))
parent->left = x;
else
parent->right = x;
} else {
root = x;
}
insertFixup(x);
return(x);
}
void deleteFixup(Node *x) {
/*************************************
* maintain Red-Black tree balance *
* after deleting node x *
*************************************/
while (x != root && x->color == BLACK) {
if (x == x->parent->left) {
Node *w = x->parent->right;
if (w->color == RED) {
w->color = BLACK;
x->parent->color = RED;
rotateLeft (x->parent);
w = x->parent->right;
}
if (w->left->color == BLACK && w->right->color == BLACK) {
w->color = RED;
x = x->parent;
} else {
if (w->right->color == BLACK) {
w->left->color = BLACK;
w->color = RED;
rotateRight (w);
w = x->parent->right;
}
w->color = x->parent->color;
x->parent->color = BLACK;
w->right->color = BLACK;
rotateLeft (x->parent);
x = root;
}
} else {
Node *w = x->parent->left;
if (w->color == RED) {
w->color = BLACK;
x->parent->color = RED;
rotateRight (x->parent);
w = x->parent->left;
}
if (w->right->color == BLACK && w->left->color == BLACK) {
w->color = RED;
x = x->parent;
} else {
if (w->left->color == BLACK) {
w->right->color = BLACK;
w->color = RED;
rotateLeft (w);
w = x->parent->left;
}
w->color = x->parent->color;
x->parent->color = BLACK;
w->left->color = BLACK;
rotateRight (x->parent);
x = root;
}
}
}
x->color = BLACK;
}
void deleteNode(Node *z) {
Node *x, *y;
/*****************************
* delete node z from tree *
*****************************/
if (!z || z == NIL) return;
if (z->left == NIL || z->right == NIL) {
/* y has a NIL node as a child */
y = z;
} else {
/* find tree successor with a NIL node as a child */
y = z->right;
while (y->left != NIL) y = y->left;
}
/* x is y's only child */
if (y->left != NIL)
x = y->left;
else
x = y->right;
/* remove y from the parent chain */
x->parent = y->parent;
if (y->parent)
if (y == y->parent->left)
y->parent->left = x;
else
y->parent->right = x;
else
root = x;
if (y != z) z->data = y->data;
if (y->color == BLACK)
deleteFixup (x);
free (y);
}
Node *findNode(T data) {
/*******************************
* find node containing data *
*******************************/
Node *current = root;
while(current != NIL)
if(compEQ(data, current->data))
return (current);
else
current = compLT (data, current->data) ?
current->left : current->right;
return(0);
}
void main(int argc, char **argv) {
int a, maxnum, ct;
Node *t;
/* command-line:
*
* rbt maxnum
*
* rbt 2000
* process 2000 records
*
*/
maxnum = atoi(argv[1]);
for (ct = maxnum; ct; ct--) {
a = rand() % 9 + 1;
if ((t = findNode(a))) {
deleteNode(t);
} else {
insertNode(a);
}
}
}
|